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it is well-known that under conditions of low heat loss the heat liberation accompanying 
the process of plastic deformation can lead to localization of the plastic deformation with 
formation of so-called adiabatic shear bands. The mechanism for formation of such bands 
proposed in [i] reduces to failure of the heat liberated in plastic deformation to propagate 
throughout the volume of the body. The local drop in strength in the heated zone leads to 
intensification of plastic shear therein, and thus, to still greater heat liberation. The 
process thus develops catastrophically to the point of material fusion in the localized 
shear zones. A necessary condition for realization of this model is the presence of signifi- 
cant thermal disorder in the material. The competing processes of deformation hardening and 
thermal disordering predetermine the existence of a maximum on the deformation curve at some 
critical deformation value. 

Formation of adiabatic shear bands also accompanies processes such as machining, drilling 
of holes, explosive compaction, etc. A review of experimental observations of plastic flow 
localization can be found in [2]. 

Theoretical studies of adiabatic shear have developed in the direction of linear analysis 
of stability of the solutions of the system of differential equations describing plastic flow 
in simple shear [3-5], and direct numerical modeling [6, 7] of plastic flow localization. 

The present study will consider the effect of the parameters of the defining equation 
on development of adiabatic shear bands. 

i. Formulation of the Problem. We will consider simple shear in an infinite layer of 
eiastoplastic material of thickness d. The lower boundary of the layer is fixed, while the 
upper boundary moves with a constant velocity v in the direction of the y' axis: 

y' = Y '  + u(x', t), x' = X ' ,  z' = Z',  T' = T'(x' ,  t'), 

where x', y', z' are current and X', Y', Z', initial coordinates of a point; u' is the displa- 
cement in the direction of the y' axis; T' is temperature; t', time. The axes y', z' lie in 
the plane of the layer's lower boundary, while the x' axis is directed normal to that plane. 

We write the equations of motion and thermal conductivity in the form 

pO2u'/at '2 = Oo'/Ox',  pcOT'/Ot'  ~ ~02T ' /ax  '2 + ?~'ae/Ot '  (i.i 

with the following boundary and initial conditions: 

Ou'/Ot'(O, t ')  = 0 ,  Ou'/Ot'(d, t') = V, 

u'(0, t') = 0, u' (d ,  t ' )  = V t ' ,  8T ' / ax ' (O ,  t ')  = O, OT ' /ax ' (d ,  t ') = 0, ( i . 2 ~  

' = = T o ( x ) ,  au ' /Ot '  (x ' ,  O) = x ' V / d .  u ( x ' , 0 )  0 ,  T ' ( x ' , 0 )  ' ' 

Here  p, c ,  ~ a r e  t h e  d e n s i t y ,  s p e c i f i c  h e a t ,  and t h e r m a l  c o n d u c t i v i t y  c o e f f i c i e n t  o f  t h e  l a y e r  
m a t e r i a l ;  o '  i s  t h e  s h e a r  s t r e s s ,  and E i s  t h e  p l a s t i c  d e f o r m a t i o n ;  7 i s  t h e  f r a c t i o n  o f  
p l a s t i c  d e f o r m a t i o n  work t r a n s f o r m e d  i n t o  h e a t ;  T~ i s  t h e  i n i t i a l  t e m p e r a t u r e .  

We assume t h a t  t h e  l a y e r  m a t e r i a l  i s  e l a s t o p l a s t i c ,  w i t h  d e f i n i n g  e q u a t i o n s  o f  t h e  fo rm 

ex = e + o ' /G,  ~' = aoe'~e ~ exp ( - -  ~T'), ( i .  3) 

where r = 8u'/Sx' is the total deformation; e 5 ae ae~ I a~' is the plastic deformation 
~ -- or' G Ot' 

r a t e ;  G0 i s  a c o n s t a n t ,  c h a r a c t e r i z i n g  t h e  s t r e n g t h  o f  t h e  m a t e r i a l ;  m, n a r e  i n d i c e s  o f  t h e  
velocity and deformation sensitivity of the shear stress; ~ is a coefficient defining tem- 
perature disorder; G is the shear modulus. 
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We then transform to the dimensionless quantities: 

rJ x = x ' / d ,  t = t'%, u = u ~ d ,  

(~0 = V/d i s  t he  mean t o t a l  de fo rma t ion  r a t e ) ,  We no te  t h a t  in t he  given case  d imens ion le s s  
t i m e  t r e p r e s e n t s  t he  average  o f  the  t o t a l  de fo rma t ion  ac ro s s  the  l a y e r  t = <~Z>. 

The system of  equa t i ons  ( . i )  w i th  boundary and i n i t i a l  c o n d i t i o n s  ( i . 2 )  then  t akes  on 
the  form 

02u/Ot ~ = qg(~/gx, gT/gt  = rO~T/Ox ~" + s~e; 
(1 .4)  

Ou/Ot(O, t ) =  O, Ou/Ot(t, t ) =  1, u(O, t ) =  O, u(l, t ) =  t, 

OT/Ox(O, t) = O, OT/Ox(l, t) = O, u(x, O) = O, T(x, O) = To(x), 8u/Ot(x, 0) = x~ o, (1 .5)  

= = �9 r ~/(pcVd); "q % % / G ,  s = Gy~/(pc); q = 

(1.3) in a form considering the possible process of unload- 

where 

We write defining equations 
ing in some part of the layer: 

(y= 

8----- 

i= 
(@~)l/m 8-n/mexp (T /~) ,  i f  ;z > O, (1 .6 )  

O, if ; e z ~ O .  

inhomogeneous plastic flow of the layer material and its further localization are ini- 
tiated by an initial inhomogeneous temperature profile with amplitude 6: T0(x) = 6 sin s r (~x). 

2. Calculation Procedures. For numerical solution of Eqs. (i.4)-(1.6) we constructed a 
nonuniform spatial grid containing N intervals with symmetrical compression toward the layer 
center x+: 

hx~ = x ~ + l  - -  x~ ( i  = i ,  2 . . . . .  N ) ,  

xl = 0 ,  xx+ 1 = ! ,  xn/~+~ = x+ = 0,5. 

The decrease in grid step size with approach to the cente~ is specified in the lower half of 
the layer by a rule Axi+ I = aSx i where i = i, 2 ..... N/2 - i. The grid in the upper half of 
the layer is obtained by mirror reflection. 

The value of ais chosen such that in the plastic flow localization region there are not 
less than N, grid points. To characterize the thickness of the localization layer we use the 

quantity H~, defined from the equation @+H~ = <~> where (~+, <~> are the maximum (at the 

center of the layer) and the mean over the layer of the plastic deformation rate). Method 
i0", established by trial and error that the optimum value for N, is N, = i0 (for N = i00). 

On the time scale two grids were used, one inserted in the other. The step of the first 
nonuniform grid was chosen from the condition of best description by the solutions obtained 
in the region where they change abruptly. The step of the second (inserted into the first) 
uniform grid was determined from the requirement of achieving a specified accuracy over the 
interval of the first grid. 

in order to avoid/divergence in calculating the plastic deformation rate at t = 0 a non- 
zero initial plastic deformation value E(x, 0) = 10 -6 . 

3. Calculation Results. In performing the calculations thefollowing parameter values 
were taken for solid steel: p = 8"I0 ~ kg/m ~, c = 5"102 J/(kg'K), I = 48 a/~.sec.m), B = 3- 

10 -3 I/K, G = 80 GPa, o0e~ = 800 MPa, n = 0.05, m = 0.025. The layer thickness d = 2.5. 
10 -3 m, with upper boundary motion rate V = 1.25 m/sec, which corresponds to a mean deforma- 
tion rate ~0 = 5-102 i/sec. Moreover, it was assumed that all the work of plastic deforma- 
tion is transformed to heat, i.e., u = i. The dimensionless parameters in Eqs. (1.4), (1.6) 
then take on the values: q = 0.01, s = 60, r = 3.83.10 -3 , q = 6.4.109 . The amplitude of the 
initial temperature inhomogeneity 6 = 0.01. This system of initial problem parameters will 
be referred to below as the base. 

The evolution of plastic deformation rate, plastic deformation, and temperature for the 
base variant of the initial parameters is shown in Fig. ia-c. A unique feature of the depen- 
dence ofplastic deformation rate at the layer center on mean total deformation (or time t) 
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is the presence of a sharp maximum. Note that the authors of [6, 7], who also modeled the 
development of an adiabatic shear band, observed no such maximum. In [6] the plas~Lic defor- 
mation rate at the layer center ~(t) was a monotonic function of time, becoming practically 

Tr 
constant at higher t. However in [6] it was assumed in the calculations that the layer mate- 
rial was strictly plastic, and deformation hardening was not considered. Calculation by the 
present authors with those same assumptions confirmed the results of [6]. Thus, the appear- 
ance of a maximum in the ~+(t) curve is related to use of the more realistic eiastopiastic 
model and consideration of deformation hardening, in [7] defining equations for elastoplastic 
flow were used, basically similar to those of the present study, but the solution was termi- 
nated in the stage of rapid increase in the function ~+. 

The numerical calculations produced a solution of the system of differential Eqs. (1.4)- 
(1.6) for various values of the parameters 6, n, m, s, D, r. in the present note we wili 
limit ourselves to study of the effect of the parameters s, ~, r on development of the locali- 
zation process. Note that over the entire range of s, U, r the shear stress o(x, t) does not 
change over layer thickness, i.e., quasistatic loading is realized. 

As a characteristic of the degree of localization of some function F(x, t) ~"x, t) 
s(x, t) or T(x, t) we introduce the quantity SF(t) = F+(t)/F(t)>, where F+(t) = F(0.5, t) is 

1 

the value of the function F(x, t) at the layer center, while <F>(t) = ~F(x,t)dx is the mean 
0 

value of F(x, t) over the layer thickness. 

Analysis of the results reveals some similarity in the effect of the parameters s, ~, 

i/r on the behavior of the functions $~(t), ~g~n), ~T~n). To present this observation in a 

clearer manner it is necessary to transform from the dimensionless time t (or the average 
total deformation over the ~ ~ to new T • the viable = <e~/<1 s>, (where <~ is the mean plas- 
tic deformation over the layer, and <E>, is the value of that quantity at the point where 
maximum stress o, occurs). 

in fact, construction of the functions o~ )I ,, ~), ~(T), ~T~T) for various values 

of s, N, r shows that to a high degree of accuracy (-1%) those functions coincide, if during 
variation of s, n, r the parameter x = sD/r is maintained. 

in Fig. 2 lines i, 2 show stress normalized to its maximum value o(~ ~')/o,, 3, 4 are the 
degree of localization of plastic deformation rate ~T), and 5, 6 are the degree of iocaliza- 
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tion of plastic deformation Se(T) for • = 156.6 ' i, 3, 5) and 78.3 ~ "~ 4, 6) t curves t curves t z, 
it is characteristic that severe localization of the plastic deformation rate is accompanied 
by an abrupt drop in flow stress, as was also noted in [6, 7]. The degree of localization of 
plastic deformation rate in the peak region significantly exceeds the degree of localization 
of plastic deformation. However for further deformation these two characteristics approach 
each other asymptotically. 

Temperature undergoes localization to a lesser degree (Fig. 3, solid line being x = 156.6; 
dashes, m = 78.3). The degree of temperature localization %Tt~) first decreases and then 

gradually increases after the maximum in stress occurs. The region of abrupt growth in tem- 
perature localization also coincides with the region of abrupt drop in flow stress, although 
the maximum in the degree of temperature localization is significantly smoother than the maxi- 
mum in the degree of localization of plastic flow rate. 

Comparison of the curves ~t~J, ~gt~J, %Tt~J wlth various values of the parameter • 
shows that with growth in • the degree of localization of plastic flow increases, and moreover, 
at large values of ~!the abrupt increase in localization sets in earlier. Thus, ~ character- 
izes the inclination of the material to localization for a given deformation rate. After 
substitution of expressions for s, q, r the parameter ~ can be expressed in the form 

"~2" 

so that materials with high Strength values o0~, thermal disorder 8, and low ability to 

spread heat over the layer thickness over the characteristic deformation time X/(d2~0) are 
more inclined to localization. 

For practical purposes, we may take as simple characteristics of the localization p~ocess 
the maximum degree of localization of the plastic deformation rate $~ and the value of ~ at 
which this maximum is achieved. 

Figure 4 shows the dependence of ~* on ~. Variation of ~ was carried out by variation 

of each of the parameters s, q, r while maintaining the base values of the other parameters 
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(ooints i-3 correspond to variation of s, D, r). Processing of the data obtained shows that 
over the entire range z = 10-156.6 the behavior of ~* is described by the dependence (line i) 

~* = 2,32(t + lO/• ( 3 . t )  

F i g u r e  4 a l s o  shows t h e  f u n c t i o n  ~*[ <e>*(• c o n s t r u c t e d  "in a s i m i l a r  manner ,  which o v e r  

t h e  e n t i r e  r a n g e  o f  • can be e x p r e s s e d  by t h e  e q u a t i o n  ( l i n e  I I )  

=  ,42• (<4" = (3.2) 

Equations (3.i), (3.2) can be used to formulate simple localization criteria, if in 
~0 solving a concrete technological problem the maximum permissible degree of localization ~, 

�9 ~ ~0 
can be specified, then the inequality L%2<~> x ~  can be used as the localization crite- 

rion, or, in as much as <e)*~ i (0oSt<0), 

�9 ) (3 3" 

However, this inequality can be satisfied only if the duration of the loading is sufficiently 
f long that the maximum of the function ~) is attained, i.e., inequality (3.3) must be sup- 

plemented by the inequality ~ _> T ~, or with consideration of Eq. ~J'~.z),'" 

, 3 4 '  <~>/> 2,32 (1 + 10/• <~>,, ( . j 

One can evaluate the quantity <~>, with sufficient accuracy from the homogeneous solu- 
tions of Eqs. (1.4)-(1.6) without consideration of the elastic components, since in the region 
where the maximum of o, is attained flow localization is still insignificant, while the over- 
all deformation rate is determined basically by the plastic deformation rate (8o/$t = 0). 

Then 

<a>,~'[---Tq---~] , ~,~Ls---7~---- ] . 

Note that criterion (3.3), (3.4) is not absolute, however it can be used for comparison of mate- 
rials as to their inclination to plastic flow localization. 

Thus, numerical modeling of the development of plastic flow perturbation in simple shear 
in an eiastoplastic medium has allowed establishment of certain principles of plastic flow 
localization, in particular, the presence of a maximum in the dependence of the degree of 
plastic flow localization on mean deformation, it has been found that strength, thermal dis- 
order, mean deformation rate, and thermal conductivity affect the localization process through 
a single parameter • The studies carried out permit formulation of simple criteria for plas- 
tic flow localization. 
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